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Abstract. Medical image classification (for example, lesions on MRI
scans) is a very challenging task due to the complicated relationships
between different lesion sub-types and expensive cost to collect high
quality labelled training datasets. Graph model has been used to model
the complicated relationship for medical imaging classification success-
fully in many previous work. However, most existing graph based models
assumed the structure is known or pre-defined, and the classification per-
formance severely depends on the pre-defined structure. To address all
the problems of current graph learning models, we proposed to jointly
learn the graph structure and use it for classification task in one frame-
work. Besides imaging features, we also use the disease semantic fea-
tures (learned from clinical reports), and predefined lymph node ontol-
ogy graph to construct the graph structure. We evaluated our model
on a T2 MRI image dataset with 821 samples and 14 types of lymph
nodes. Although this dataset is very unbalanced on different types of
lymph nodes, our model shows promising classification results on this
challenging datasets compared to several state of art methods.

1 Introduction

Accurate classification of lymph nodes is of very important clinical meaning for
the diagnosis or prognosis of numerous diseases such as metabolises cancer and
can be used as assistance for the radiologist to locate abnormality and diagnosis
different diseases. Developing machine learning methods to automatically iden-
tify different lymph nodes from MRI scans is a very challenging task due to the
similar morphological structures of lymph nodes, very complicated relationship
between different types of lymph nodes and the expensive cost to collect large-
scale labelled image datasets. Labelling lymph node types from the MRI scans is
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Fig. 1. The framework of the classical graph based classification.

very time consuming and expensive since it requires the well trained radiologist
to look into each MRI slices, therefore, it is not realistic to collect a large size
labeled dataset to train a deep learning system.

In this work, instead of manually labelling images, we extracted lymph node
key words from clinical notes associated with MRI scans by experienced radi-
ologists and used the extracted key words as classification labels for the cor-
responding MRI images. We extracted 14 different types of lymph nodes from
the clinical reports (as shown in Fig. 3) from 821 T2 MRI key slices. It is worth
noting that our dataset is highly unbalanced on different types of lymph nodes
(some lymph node has more than 80 training images and some lymph node
only have less than 10 training images). Considering the unbalanced small size
training dataset, it is very challenging to train the classification model with high
accuracy and generalizability.

Motivated by recent works on successfully using semantic information for
image classification and image captioning problems [10,11], we proposed to lever-
age the semantic features learned from clinical notes along with a predefined
lymph node ontology graph (as shown in Fig. 2) by radiologist for the lymph
node classification. We proposed to learn a semantic feature embedding on the
clinical reports and used it to learn the semantic relationship between different
lymph node types. Based on this semantic embedding space, we also combined it
with the ontology graph (shown in Fig. 1 (b)) to construct a knowledge graph to
guide our classification task. Besides, most existing graph models assume that the
graph structure is known or predefined. When graph structure is unknown, they
usually use K-nearest neighbor to construct a graph structure from image fea-
tures and use it for downstream image classification task [2,8]. Defining graph
structure is critical for the downstream graph node classification task, recent
work shows that learning a graph structure can significantly boost the perfor-
mance of graph based classification tasks [12]. In this work, we also proposed a
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joint graph structure learning and classification framework with prior informa-
tion from semantic features (learned from clinical reports) and radiologist defined
lymph node ontology graph. We evaluated our proposed model on lymph node
classification in T2 MRI scans and show consistent improvement compared to
several state-of-the-art methods given a small and imbalanced training dataset.

Fig. 2. The predefined ontology graph of a lymph node structure by an experienced
radiologist. We use this ontology graph as a prior to construct our knowledge graph.
The 14 labels on our dataset is also shown here.

2 Method

Graph Learning for Classification. We define a graph G = (V, E), where V
is the set of vertices or nodes (we will use nodes throughout the paper), and E
is the set of edges. Let vi ∈ V denote a node and eij = (vi,vj) ∈ E to denote
an edge pointing from vj to vi. The adjacency matrix Λ is a n × n matrix with
Λij = 1 if eij ∈ E and Aij = 0 if eij /∈ E. It is worth noting that we only
consider about the un-directed graph in this work, thus Λ is symmetric. It is
straightforward to extend our frame work to the directed graph with different
graph structure regularization terms. The node of graph has node feature xi ∈
Rd×1, X = [x1, · · · , xn] ∈ R

n×d is a node feature matrix for all nodes in the
graph. Let yi denotes the class labels of node xi and Y = [y1, · · · ,yn] denotes
the node class labels of all different nodes on the graph. Conventional graph
learning methods usually define a function f(X,Λ) = Y with input as node
feature vector matrix X and graph adjacency matrix Λ to estimate the class
labels Y for each node. f can be a simple linear model or a graph neural network
model. The classic graph learning solves the following function to learn f ,

�L(X,Y) = ‖Y − f(X,Λ)‖p + λf(X,Λ)T f(X,Λ)
s. t. = I − Λ,

(1)
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where ‖ · ‖p represents Lp norm, the first term is the label prediction term and
the second term is the laplacian constraint term, I is the identity matrix, is
the laplacian matrix of graph. If using a multi-layer deep graph neural network
model for f

�L(X,Y) = ‖Y − f(X,Λ)‖p + λf(X,Λ)T f(X,Λ)
s. t. = I − Λ

(2)

These graph learning methods always assumed that the graph structure is prede-
fined (the adjacency matrix Λ is given), which is not applicable for many cases.
For example, the connection or similarity between different patients or different
types of lymph nodes is hard to defined. In practice, many previous works just
use a K-nearest neighbor to extract the graph adjacency matrix and use it for
label propagation on the graph. Recent works have shown that defining an opti-
mal graph structure is crucial for the label classification task on the graph and
jointly optimizing label propagation and learning graph structures can signifi-
cantly improve the performance and generalizability of graph models [2].

Jointly Learning Graph Structure and Classification. We propose to learn
the graph structure Λ jointly with graph label propagation, let Λ = g(X) be the
function to learn the graph structure, we define the new loss function as,

�L(X,Λ,Y) = ‖Y − f(X,Λ)‖p + λ0f(X,Λ)T f(X,Λ) (3)
+λg‖Λ − g(X)‖p, s. t. = I − Λ

There are many ways to construct the graph structure learning g function,
for example, previous work [2] has tried to use Bernoulli sampling to learning
the graph structure from discrete nodes, or using sparse and low rank subspace
learning to learn the graph structure. We follow the [1,6,13] to use the sparse and
low rank subspace learning in our work. However, it is straight forward to extend
our work with different graph structure learning methods. We reformulated our
objective function as,

L(X,Λ,Y) = ‖Y − f(X,Λ)‖p + λ0f(X,Λ)T f(X,Λ) (4)
+λ1‖Λ‖1 + λ2‖Λ‖∗, s. t. = I − Λ,X = XΛ,

where Λ is constrained to be low rank using the nuclear norm ‖‖∗ and sparse
using L1 norm.

Predefined Knowledge Graph. Many previous works have shown that expert
knowledge is tremendously helpful for medical data analysis especially when
labelled training data-size is small. In this work, we only have 821 labelled MRI
slices as training data, which is very small for training a graph neural network.
In order to further improve our model, we extracted a knowledge graph from
radiologist labelled lymph node ontology graph as shown in Fig. 2. For all labelled
training images/nodes, we will construct in-directed edges between them, if they
are connected in the predefined ontology graph.
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Besides the ontology graph, since we can access the clinical report associated
with each MRI slice in our dataset, we also use the MRI reports (shown in
Fig. 3) to train a report classification model using pre-trained BERT [4] and
apply it to extract a semantic vector by attention pooling for different lymph
nodes. Based on the similarity between these semantic features and the ontology
graph, we constructed a knowledge graph for node label classification. Denote
the adjacency matrix of the knowledge graph as Akg, our problem is further
formulated as,

�L(X,Λ,Y) = ‖Y − f(X,Λ)‖p + λ0f(X,Λ)T f(X,Λ) (5)
+λ1‖Λ‖1 + λ2‖Λ‖∗, s. t. = I − (Λ + βΛkg),X = XΛ,

where β is a hyper-parameter to learn for adding the knowledge graph as prior
in this problem. In order to solve Eq. 6, we use a Lagrange multiplayer to add
the constraints to the objective function,

�L(X,Λ,Y) = ‖Y − f(X)‖p + λ0f(X)T (I − (Λ + βΛkg)) (6)
f(X) + λ1‖Λ‖1 + λ2‖Λ‖∗ + λ3‖X − XΛ‖22

Graph Convolutional Neural Networks. Graph convolutional neural net-
works have shown great successes on many applications [3,14], our proposed
framework can be easily combined with graph convolutional neural networks. Let
H denotes the hidden states of a graph neural network, Wl as the weights for the
hidden layer l, a standard graph convolutional neural network can be formulated
Hl+1 = f(Wl,Λ,Hl), where the input is the image feature matrix X and output
is the predicted labels Y, thus, H0 = X,Hlast = Y,H = [H0, · · · ,Hlast]. We
can rewrite Eq. 7 using graph convolutional neural networks as,

�L(X,Λ,Y,W,H) = ‖Y − f(X,W,Λ,H)‖p

+λ0f(X,W,Λ,H)T (I − (Λ + βΛkg))f(X,W,Λ,H)
+λ1‖Λ‖1 + λ2‖Λ‖∗ + λ3‖X − XΛ‖22. (7)

Optimization Method. It is trivial to optimize both the graph structure and
node classification on the same dataset. In order to solve Eq. 7, we proposed a bi-
level optimization method to learn the graph structure Λ, GNN model weight W
and labels Y jointly. The graph structure adjacency matrix Λ is learned on
the validation dataset, and the GNN model weight W is learned on the train-
ing dataset. Hyperparamters λ0, λ1, λ2, λ3, β are also learned on the validation
dataset too. The detailed optimization algorithm is shown in Algorithm 1.
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Algorithm 1: Optimization algorithm for jointly learn Λ,W
Result: Graph Adjacency Matrix Λ, Graph Neural Network weights W

1 Initialize parameter W randomized, H0 = X,Hlast = Y, λ0, λ1, λ2, λ3;
2 i = 1, max iteration of outer loop maxiter = 1e5;
3 max iteration of inner loop maxk = 1e3;
4 learning rate ρ = 1e − 3 ;
5 while i < maxiter do

6 Wi+1 = Wi + μw
∂ �Li

(X,Λk,Wi,Yi,Hi)
Y ;

7 μw = ∂2 �Li
(X,Λk,Wi,Yi,Hi)

W2 ;
8 i = i + 1;
9 k = 1;

10 while k < maxk (Validation Dataset) do

11 Λk+1,i = Λk,i + μA
∂ �Lk,i

(X,Λk,i,Wi,Yi,Hi)
Λ ;

12 μA = ∂2 �Li
(X,Λk,Wi,Yi,Hi)

Λ2 ;
13 μA = ρμA + μA;
14 k = k + 1;
15 end
16 μW = ρμW + μW ;
17 end

3 Experiments

Dataset. For model development and validation, we collected large-scale MRI
studies from **, performed between Jan 2015 to Sept 2019 along with their asso-
ciated radiology reports. The majority (63%) of the MRI studies were from the
oncology department. This dataset consists of a total of 821 T2-weighted MRI
axial slices from 584 unique patients. The lymph node labels were extracted by a
radiologist with 8 years of post-graduate experience. The study was a retrospec-
tive study and was approved by the Institutional Review Board with a waiver of
informed consent. This dataset comprised the reference (gold) standard for our
evaluation and comparative analysis.

Benchmark Methods. We implemented several benchmark methods in our
experiments. 1) Support Vector Machine (SVM) [7]: applying classical SVM on
the extracted multi-scale bounding box features. 2) Structured SVM: constrain-
ing the support vector machine to output structural labels constrained by the
knowledge graph structure in Fig. 2. 3) Standard Simple Graph Model (SG);
4) SG with Graph Structure Learning (SG+SL); 5) SG with SL and Prede-
fined Knowledge Graph (SG+SL+KG); 6) Deep Neural Graph (GCN); 7) GCN
with Graph Structure Learning (GCN+SL); 8) GCN with SL and Predefined
Knowledge Graph (GCN+SL+KG); 9) Deep Neural Hyper-Graph (HGCN)[9];
10) HGCN with Graph Structure Learning (HGCN+SL); 11) HGCN with SL
and Predefined Knowledge Graph (HGCN+SL+KG). We use the same lymph
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Fig. 3. An example of MRI slice with the labelled bounding boxes for lymph-nodes and
graph-cut based detailed annotations of lymph nodes, linked clinical report sentences
and radiologist labelled lymph node names.

node image feature embedding framework for all competing methods since we
want to show the different classification performance between our methods and
all other benchmark methods.

Experiment Setting and Data Processing. We divided the dataset into 10
folds, use one fold as validation dataset and two folds as testing dataset, the
left seven folds are used as the training dataset. We run the cross validation
for 10 times and report the averaged top-k (k = 1,2,3) classification of accuracy
for different types of lymph nodes, F1-score and AUC of binary classification
performance. In our dataset, we have the access to the clinical report of each
MRI scan. The radiologist describes the lymph node information including the
labels, size measurements, and slice numbers in a sentence with hyperlink (called
bookmark) referred to the related MRI slices. The radiologist defines a bookmark
as a hyperlink connection between the annotation in the image and then writes
description in the report. We have one experienced radiologist to extract the
lymph node labels from the bookmark linked sentences and use them as the
ground truth labels for the lymph nodes in the connected MRI slices.

The size of lymph nodes are measured by four points at maximum dimension
of lymph nodes or two points at the maximum dimension of lymph nodes. Based
on these key points, we extracted multi-scale bounding boxes around the lymph
nodes and extract the features in these bounding boxes using pretrained CNN
model on MRI slices. We further use graph-cut to extract the fine contours
of the lymph nodes and extract the cut lymph nodes using pretrained CNN
model. We concatenated all these multi-scale bounding box features and lymph
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Table 1. The top-k ACC & top-k F1 score of multi-class lymph node classification
performance by different competing methods

Method top-1 ACC top-2 ACC top-3 ACC top-1 F1 top-2 F1 top-3 F1

SVM 0.72 0.78 0.85 0.70 0.76 0.83

Structured SVM 0.75 0.81 0.87 0.74 0.80 0.85

SG 0.73 0.80 0.86 0.72 0.79 0.84

SG+SL 0.76 0.82 0.88 0.75 0.81 0.87

SF+SL+KG 0.79 0.85 0.90 0.78 0.84 0.88

GCN 0.75 0.81 0.87 0.74 0.80 0.86

GCN+SL 0.81 0.84 0.89 0.80 0.83 0.88

GCN+SL+KG 0.83 0.86 0.91 0.82 0.86 0.90

Hyper-GCN 0.76 0.83 0.88 0.75 0.82 0.87

Hyper-GCN+SL 0.83 0.87 0.91 0. 82 0.86 0.90

Hyper-GCN+SL+KG 0.85 0.89 0.93 0.84 0.88 0.92

node features and use it as the graph node feature representation. The length
of the concatenated multi-scale feature vector is 25088. We use the pre-trained
bioBERT to train the clinical notes classification and label attention to extract
the semantic label embedding. We used about more than 28000 sentences of
de-identified clinical reports from ** hospital and use it to embed the distance
between different lymph node names in our dataset. Based on the semantic
distance between different lymph nodes, we constructed a semantic embedding
graph and combine it with the predefined ontology graph shown in Fig. 2 to
refine the final label prediction results.

Quantitative Results. We compared our proposed model to several bench-
marks and Table 1 shows the top-k mean accuracy and F1 score of 14 classifica-
tion results on the 10-fold cross validation. Top-k accuracy has been broadly used
for multi-class classification performance measurement in previous work [5]. We
show that the simple graph model generally outperforms SVM methods, and the
structured SVM improves classical SVM about > 0.03 on both accuracy and F1
score by adding the structured constraints on different classes (extracted from
the pre-defined ontology graph). Learning graph structure improves the top-k
accuracy of the simple graph model by > 0.03 and F1 score about > 0.02. Using
knowledge graph improves the simple graph mode further about > 0.03 on both
top-k accuracy and F1 score. The convolutional neural graph also improves the
classification top-k accuracy and F1 score consistently compared to the simple
graph model. Learning graph structure and using knowledge graph under con-
volutional neural graph framework, our proposed model achieves the best per-
formance and shows about 0.91 on top-3 accuracy and 0.90 on top-3 F1 score.
We also combine the graph learning method with convolutional hyper-graph
model and show that it improves the accuracy and F1-score > %2 compared to
convolutional graph model. The best top-3 accuracy and F1 score achieved by
hyper-graph model is 93% and 0.92%.
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